On Tensor Products of Operator Modules
نویسنده
چکیده
The injective tensor product of normal representable bimodules over von Neumann algebras is shown to be normal. The usual Banach module projective tensor product of central representable bimodules over an Abelian C∗-algebra is shown to be representable. A normal version of the projective tensor product is introduced for central normal bimodules.
منابع مشابه
Bessel multipliers on the tensor product of Hilbert $C^ast-$ modules
In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملHilbert Modules and Tensor Products of Operator Spaces
The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product H⊗̂H is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C∗-algebra is shown to be completely bounded with ‖b‖cb = ‖b‖. The so ca...
متن کاملA theory of tensor products for vertex operator algebra satisfying C
We reformed the tensor product theory of vertex operator algebras developed by Huang and Lepowsky so that we could apply it to all vertex operator algebras satisfying C2-cofiniteness. We also showed that the tensor product theory develops naturally if we include not only ordinary modules, but also weak modules with a composition series of finite length (we call it an Artin module). In particula...
متن کاملA Theory of Tensor Products for Vertex Operator Algebra Satisfying C 2 -cofiniteness
The recent researchs show that C2-cofiniteness is a natural conditition to consider a vertex operator algebra with finitely many simple modules. Therefore, we extended the tensor product theory of vertex operator algebras developed by Huang and Lepowsky without assuming the compatibility condition nor the semisimplicity of grading operator so that we could apply it to all vertex operator algebr...
متن کاملThe non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کامل